Multivariate long-term time series forecasting has been suffering from the challenge of capturing both temporal dependencies within variables and spatial correlations across variables simultaneously. Current approaches predominantly repurpose backbones from natural language processing or computer vision (e.g., Transformers), which fail to adequately address the unique properties of time series (e.g., periodicity). The research community lacks a dedicated backbone with temporal-specific inductive biases, instead relying on domain-agnostic backbones supplemented with auxiliary techniques (e.g., signal decomposition). We introduce Fourier Neural Filter (FNF) as the backbone and Dual-Branch Design (DBD) as the architecture to provide excellent learning capabilities and optimal learning pathways for spatio-temporal modeling, respectively. Our theoretical analysis proves that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling, while information bottleneck theory demonstrates that DBD provides superior gradient flow and representation capacity compared to existing unified or sequential architectures. Our empirical evaluation across 11 public benchmark datasets spanning five domains (energy, meteorology, transportation, environment, and nature) confirms state-of-the-art performance with consistent hyperparameter settings. Notably, our approach achieves these results without any auxiliary techniques, suggesting that properly designed neural architectures can capture the inherent properties of time series, potentially transforming time series modeling in scientific and industrial applications.
Our proposed FNF achieves state-of-the-art performance across comprehensive benchmarks:
✨ Consistent SOTA performance across Energy, Meteorology, Transportation, Environment, and Nature domains
Our approach introduces two key innovations for multivariate long-term time series forecasting:
Key Insight: By designing temporal-specific inductive biases directly into the backbone architecture, FNF naturally captures the inherent properties of time series without relying on auxiliary signal decomposition techniques.
⬅️ Scroll horizontally to view all models and results ➡️
Dataset | Horizon | FNF (Ours) | PatchTST | Crossformer | Pathformer | iTransformer | TimeMixer | DLinear | NLinear | TimesNet | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
ETTh1 | 96 | 0.355 | 0.388 | 0.376 | 0.396 | 0.405 | 0.426 | 0.372 | 0.392 | 0.386 | 0.405 | 0.372 | 0.401 | 0.371 | 0.392 | 0.372 | 0.393 | 0.389 | 0.412 |
192 | 0.396 | 0.412 | 0.399 | 0.416 | 0.413 | 0.442 | 0.408 | 0.415 | 0.424 | 0.440 | 0.413 | 0.430 | 0.404 | 0.413 | 0.405 | 0.413 | 0.440 | 0.443 | |
336 | 0.425 | 0.425 | 0.418 | 0.432 | 0.442 | 0.460 | 0.438 | 0.434 | 0.449 | 0.460 | 0.438 | 0.450 | 0.434 | 0.435 | 0.429 | 0.427 | 0.482 | 0.465 | |
720 | 0.436 | 0.445 | 0.450 | 0.469 | 0.550 | 0.539 | 0.450 | 0.463 | 0.495 | 0.487 | 0.486 | 0.484 | 0.469 | 0.489 | 0.436 | 0.452 | 0.525 | 0.501 | |
Avg | 0.403 | 0.417 | 0.410 | 0.428 | 0.452 | 0.466 | 0.417 | 0.426 | 0.438 | 0.448 | 0.427 | 0.441 | 0.419 | 0.432 | 0.410 | 0.421 | 0.459 | 0.455 | |
ETTh2 | 96 | 0.266 | 0.326 | 0.277 | 0.339 | 0.611 | 0.557 | 0.279 | 0.336 | 0.297 | 0.348 | 0.281 | 0.351 | 0.302 | 0.368 | 0.275 | 0.338 | 0.319 | 0.363 |
192 | 0.331 | 0.371 | 0.345 | 0.381 | 0.810 | 0.651 | 0.345 | 0.380 | 0.372 | 0.403 | 0.349 | 0.387 | 0.405 | 0.433 | 0.336 | 0.379 | 0.411 | 0.416 | |
336 | 0.336 | 0.388 | 0.368 | 0.404 | 0.928 | 0.698 | 0.378 | 0.408 | 0.388 | 0.417 | 0.366 | 0.413 | 0.496 | 0.490 | 0.362 | 0.403 | 0.415 | 0.443 | |
720 | 0.378 | 0.418 | 0.397 | 0.432 | 1.094 | 0.775 | 0.437 | 0.455 | 0.424 | 0.444 | 0.401 | 0.436 | 0.766 | 0.622 | 0.396 | 0.437 | 0.429 | 0.445 | |
Avg | 0.327 | 0.375 | 0.346 | 0.389 | 0.860 | 0.670 | 0.359 | 0.394 | 0.370 | 0.403 | 0.349 | 0.396 | 0.492 | 0.478 | 0.342 | 0.389 | 0.393 | 0.416 | |
ETTm1 | 96 | 0.286 | 0.330 | 0.290 | 0.343 | 0.310 | 0.361 | 0.290 | 0.335 | 0.300 | 0.353 | 0.293 | 0.345 | 0.299 | 0.343 | 0.301 | 0.343 | 0.377 | 0.398 |
192 | 0.324 | 0.356 | 0.329 | 0.368 | 0.363 | 0.402 | 0.337 | 0.363 | 0.341 | 0.380 | 0.335 | 0.372 | 0.334 | 0.364 | 0.337 | 0.365 | 0.405 | 0.411 | |
336 | 0.358 | 0.376 | 0.360 | 0.390 | 0.408 | 0.430 | 0.374 | 0.384 | 0.374 | 0.394 | 0.368 | 0.386 | 0.365 | 0.384 | 0.371 | 0.384 | 0.443 | 0.437 | |
720 | 0.423 | 0.410 | 0.416 | 0.422 | 0.777 | 0.637 | 0.428 | 0.416 | 0.429 | 0.430 | 0.426 | 0.417 | 0.418 | 0.415 | 0.426 | 0.415 | 0.495 | 0.464 | |
Avg | 0.347 | 0.368 | 0.348 | 0.380 | 0.464 | 0.457 | 0.357 | 0.374 | 0.361 | 0.389 | 0.355 | 0.380 | 0.354 | 0.376 | 0.358 | 0.376 | 0.430 | 0.427 | |
ETTm2 | 96 | 0.158 | 0.244 | 0.165 | 0.254 | 0.263 | 0.359 | 0.164 | 0.250 | 0.175 | 0.266 | 0.165 | 0.256 | 0.164 | 0.255 | 0.163 | 0.252 | 0.190 | 0.266 |
192 | 0.214 | 0.282 | 0.221 | 0.292 | 0.361 | 0.425 | 0.219 | 0.288 | 0.242 | 0.312 | 0.225 | 0.298 | 0.224 | 0.304 | 0.218 | 0.290 | 0.251 | 0.308 | |
336 | 0.267 | 0.317 | 0.275 | 0.325 | 0.469 | 0.496 | 0.267 | 0.319 | 0.282 | 0.337 | 0.277 | 0.332 | 0.277 | 0.337 | 0.273 | 0.326 | 0.322 | 0.350 | |
720 | 0.360 | 0.379 | 0.360 | 0.380 | 1.263 | 0.857 | 0.361 | 0.377 | 0.375 | 0.394 | 0.360 | 0.387 | 0.371 | 0.401 | 0.361 | 0.382 | 0.414 | 0.403 | |
Avg | 0.249 | 0.305 | 0.255 | 0.312 | 0.589 | 0.534 | 0.252 | 0.308 | 0.268 | 0.327 | 0.256 | 0.318 | 0.259 | 0.324 | 0.253 | 0.312 | 0.294 | 0.331 | |
Electricity | 96 | 0.128 | 0.219 | 0.133 | 0.233 | 0.135 | 0.237 | 0.135 | 0.222 | 0.134 | 0.230 | 0.153 | 0.256 | 0.140 | 0.237 | 0.141 | 0.236 | 0.164 | 0.267 |
192 | 0.145 | 0.236 | 0.150 | 0.248 | 0.160 | 0.262 | 0.157 | 0.253 | 0.154 | 0.250 | 0.168 | 0.269 | 0.154 | 0.250 | 0.155 | 0.248 | 0.180 | 0.280 | |
336 | 0.157 | 0.250 | 0.168 | 0.267 | 0.182 | 0.282 | 0.170 | 0.267 | 0.169 | 0.265 | 0.189 | 0.291 | 0.169 | 0.268 | 0.171 | 0.264 | 0.190 | 0.292 | |
720 | 0.201 | 0.286 | 0.202 | 0.295 | 0.246 | 0.337 | 0.211 | 0.302 | 0.194 | 0.288 | 0.228 | 0.320 | 0.204 | 0.301 | 0.210 | 0.297 | 0.209 | 0.307 | |
Avg | 0.157 | 0.247 | 0.163 | 0.260 | 0.180 | 0.279 | 0.168 | 0.261 | 0.162 | 0.258 | 0.184 | 0.284 | 0.166 | 0.264 | 0.169 | 0.261 | 0.185 | 0.286 | |
Weather | 96 | 0.149 | 0.188 | 0.149 | 0.196 | 0.146 | 0.212 | 0.148 | 0.195 | 0.157 | 0.207 | 0.147 | 0.198 | 0.170 | 0.230 | 0.179 | 0.222 | 0.170 | 0.219 |
192 | 0.194 | 0.232 | 0.193 | 0.240 | 0.195 | 0.261 | 0.191 | 0.235 | 0.200 | 0.248 | 0.192 | 0.243 | 0.212 | 0.267 | 0.218 | 0.261 | 0.222 | 0.264 | |
336 | 0.248 | 0.274 | 0.244 | 0.281 | 0.268 | 0.325 | 0.243 | 0.274 | 0.252 | 0.287 | 0.247 | 0.284 | 0.257 | 0.305 | 0.266 | 0.296 | 0.293 | 0.310 | |
720 | 0.316 | 0.326 | 0.314 | 0.332 | 0.330 | 0.380 | 0.318 | 0.326 | 0.320 | 0.336 | 0.318 | 0.330 | 0.318 | 0.356 | 0.334 | 0.344 | 0.360 | 0.355 | |
Avg | 0.226 | 0.255 | 0.225 | 0.262 | 0.234 | 0.294 | 0.225 | 0.257 | 0.232 | 0.269 | 0.226 | 0.263 | 0.239 | 0.289 | 0.249 | 0.280 | 0.261 | 0.287 | |
Traffic | 96 | 0.379 | 0.242 | 0.379 | 0.271 | 0.514 | 0.282 | 0.384 | 0.250 | 0.363 | 0.265 | 0.369 | 0.257 | 0.410 | 0.282 | 0.410 | 0.279 | 0.600 | 0.313 |
192 | 0.393 | 0.248 | 0.394 | 0.277 | 0.501 | 0.273 | 0.405 | 0.257 | 0.384 | 0.273 | 0.400 | 0.272 | 0.423 | 0.288 | 0.423 | 0.284 | 0.619 | 0.328 | |
336 | 0.401 | 0.253 | 0.404 | 0.281 | 0.507 | 0.279 | 0.424 | 0.265 | 0.396 | 0.277 | 0.407 | 0.272 | 0.436 | 0.296 | 0.436 | 0.291 | 0.627 | 0.330 | |
720 | 0.438 | 0.273 | 0.442 | 0.302 | 0.571 | 0.301 | 0.452 | 0.283 | 0.445 | 0.308 | 0.461 | 0.316 | 0.466 | 0.315 | 0.464 | 0.308 | 0.659 | 0.342 | |
Avg | 0.402 | 0.254 | 0.404 | 0.282 | 0.523 | 0.283 | 0.416 | 0.263 | 0.397 | 0.280 | 0.409 | 0.279 | 0.433 | 0.295 | 0.433 | 0.290 | 0.626 | 0.328 | |
AQShunyi | 96 | 0.629 | 0.461 | 0.648 | 0.481 | 0.652 | 0.484 | 0.667 | 0.472 | 0.650 | 0.479 | 0.654 | 0.483 | 0.651 | 0.492 | 0.653 | 0.486 | 0.658 | 0.488 |
192 | 0.685 | 0.484 | 0.690 | 0.501 | 0.674 | 0.499 | 0.707 | 0.491 | 0.693 | 0.498 | 0.700 | 0.498 | 0.691 | 0.512 | 0.701 | 0.506 | 0.707 | 0.511 | |
336 | 0.704 | 0.497 | 0.711 | 0.515 | 0.704 | 0.515 | 0.732 | 0.503 | 0.713 | 0.510 | 0.715 | 0.510 | 0.716 | 0.529 | 0.722 | 0.519 | 0.785 | 0.537 | |
720 | 0.764 | 0.522 | 0.770 | 0.538 | 0.747 | 0.518 | 0.783 | 0.515 | 0.766 | 0.537 | 0.756 | 0.534 | 0.765 | 0.556 | 0.777 | 0.545 | 0.755 | 0.527 | |
Avg | 0.695 | 0.491 | 0.704 | 0.508 | 0.694 | 0.504 | 0.722 | 0.495 | 0.705 | 0.506 | 0.706 | 0.506 | 0.705 | 0.522 | 0.713 | 0.514 | 0.726 | 0.515 | |
AQWan | 96 | 0.711 | 0.446 | 0.745 | 0.470 | 0.750 | 0.465 | 0.761 | 0.458 | 0.747 | 0.470 | 0.744 | 0.468 | 0.756 | 0.481 | 0.758 | 0.475 | 0.791 | 0.488 |
192 | 0.773 | 0.473 | 0.792 | 0.491 | 0.762 | 0.479 | 0.801 | 0.478 | 0.787 | 0.486 | 0.804 | 0.488 | 0.800 | 0.502 | 0.809 | 0.496 | 0.779 | 0.490 | |
336 | 0.799 | 0.486 | 0.819 | 0.503 | 0.802 | 0.504 | 0.821 | 0.488 | 0.814 | 0.497 | 0.813 | 0.500 | 0.823 | 0.516 | 0.830 | 0.508 | 0.814 | 0.505 | |
720 | 0.588 | 0.483 | 0.574 | 0.499 | 0.543 | 0.483 | 0.596 | 0.483 | 0.591 | 0.501 | 0.588 | 0.498 | 0.548 | 0.486 | 0.595 | 0.504 | 0.627 | 0.511 | |
Avg | 0.515 | 0.438 | 0.511 | 0.465 | 0.482 | 0.447 | 0.520 | 0.441 | 0.522 | 0.456 | 0.517 | 0.451 | 0.496 | 0.451 | 0.522 | 0.457 | 0.537 | 0.465 | |
CzeLan | 96 | 0.170 | 0.208 | 0.183 | 0.251 | 0.581 | 0.443 | 0.172 | 0.213 | 0.177 | 0.239 | 0.175 | 0.230 | 0.211 | 0.289 | 0.178 | 0.229 | 0.176 | 0.237 |
192 | 0.200 | 0.231 | 0.208 | 0.271 | 0.705 | 0.503 | 0.207 | 0.236 | 0.201 | 0.257 | 0.206 | 0.254 | 0.252 | 0.323 | 0.210 | 0.252 | 0.215 | 0.279 | |
336 | 0.228 | 0.257 | 0.243 | 0.302 | 0.971 | 0.596 | 0.240 | 0.262 | 0.232 | 0.282 | 0.230 | 0.277 | 0.317 | 0.366 | 0.243 | 0.280 | 0.224 | 0.288 | |
720 | 0.262 | 0.286 | 0.273 | 0.335 | 1.566 | 0.762 | 0.288 | 0.298 | 0.261 | 0.311 | 0.262 | 0.309 | 0.358 | 0.392 | 0.284 | 0.317 | 0.282 | 0.337 | |
Avg | 0.215 | 0.245 | 0.226 | 0.289 | 0.955 | 0.576 | 0.226 | 0.252 | 0.217 | 0.272 | 0.218 | 0.267 | 0.284 | 0.342 | 0.228 | 0.269 | 0.224 | 0.285 | |
ZafNoo | 96 | 0.437 | 0.389 | 0.444 | 0.426 | 0.432 | 0.419 | 0.435 | 0.391 | 0.439 | 0.408 | 0.441 | 0.396 | 0.434 | 0.411 | 0.446 | 0.410 | 0.479 | 0.424 |
192 | 0.498 | 0.429 | 0.498 | 0.456 | 0.432 | 0.419 | 0.501 | 0.432 | 0.505 | 0.443 | 0.498 | 0.444 | 0.484 | 0.444 | 0.503 | 0.447 | 0.491 | 0.446 | |
336 | 0.539 | 0.453 | 0.530 | 0.480 | 0.521 | 0.469 | 0.551 | 0.461 | 0.555 | 0.473 | 0.543 | 0.466 | 0.518 | 0.464 | 0.544 | 0.470 | 0.551 | 0.479 | |
720 | 0.588 | 0.483 | 0.574 | 0.499 | 0.543 | 0.483 | 0.596 | 0.483 | 0.591 | 0.501 | 0.588 | 0.498 | 0.548 | 0.486 | 0.595 | 0.504 | 0.627 | 0.511 | |
Avg | 0.515 | 0.438 | 0.511 | 0.465 | 0.482 | 0.447 | 0.520 | 0.441 | 0.522 | 0.456 | 0.517 | 0.451 | 0.496 | 0.451 | 0.522 | 0.457 | 0.537 | 0.465 |
Table A3: Comprehensive experimental results on multivariate long-term forecasting. Best results in bold, second-best underlined. FNF consistently outperforms baseline models across different datasets and forecast horizons, demonstrating superior performance in both MSE and MAE metrics. Note: This shows a subset of datasets. The complete table with all 11 datasets (ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Weather, Traffic, AQShunyi, AQWan, CzeLan, ZafNoo) and all 9 baseline models is available in the full paper.